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A TRUST REGION FRAMEWORK FOR MANAGING THE USE OF APPROXIMATION

MODELS IN OPTIMIZATION

NATALIA ALEXANDROV *, J. E. DENNIS, JR. ?, ROBERT MICHAEL LEWIS :_, AND VIRGINIA TORCZON §

Abstract. This paper presents an analytically robust, globally convergent approach to managing the

use of approximation models of various fidelity in optimization. By robust global behavior we mean the

mathematical assurance that the iterates produced by the optimization algorithm, started at an arbitrary

initial iterate, will converge to a stationary point or local optimizer for the original problem. The approach

we present is based on the trust region idea from nonlinear programming and is shown to be provably

convergent to a solution of the original high-fidelity problem. The proposed method for managing approx-

imations in engineering optimization suggests ways to decide when the fidelity, and thus the cost, of the

approximations might be fruitfully increased or decreased in the course of the optimization iterations. The

approach is quite general. We make no assumptions on the structure of the original problem, in particular,

no assumptions of convexity and separability, and place only mild requirements on the approximations. The

approximations used in the framework can be of any nature appropriate to an application; for instance, they

can be represented by analyses, simulations, or simple algebraic models. This paper introduces the approach

and outlines thc convergence analysis.
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1. Introduction. In this paper we present an approach to managing the use of approximation models

in optimization that is based on the trust region approach from nonlinear programming [8, 17]. The approach

we present inherits the mathematical robustness and global and local convergence properties of the classical

trust region methods. By global convergence we mean the assurance that the iterates produced by an

optimization algorithm working with the approximation models, started at an arbitrary initial iterate, will

converge to a stationary point or local optimizer for the original problem. The local convergence rate

determines the asymptotic efficiency of the method. The approach we present also suggests criteria to decide

when the fidelity (and thus the cost) of the approximations might be fruitfully increased or decreased.

The use of approximations in engineering optimization motivates this work. A review of approximation

models in structural optimization can be found in [2]. When many of these ideas were first formalized,

for instance, in [22] and [24], the idea was to employ approximation models in conjunction with existing

mathematical programming techniques to solve structural design optimization problems. However, to the
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best of our knowledge, prior analysis in the structural optimization community has focussed on the question

of whether or not the optimization technique would converge to a solution of the problem defined by the

approximation concept, rather than the original problem (e.g., [3, 15], with an exception being [1, 18]).

Because the method we propose inherits the convergence properties of the classical trust region algorithms

for nonlinear optimization, we can give simple conditions which assure that the iterates produced by using

suitable approximation models, starting from an arbitrary initial iterate, will converge to a stationary point

or a local optimizer of the original problem. The analysis easily accommodates varying the nature of the

approximation from iteration to iteration.

The trust region framework gives an adaptive method for managing the amount of optimization done

with the approximation models before one has recourse to a detailed model to check the validity of the

design generated by the approximation model. This regulation is based on the ability of the approximation

to predict improvement in the system being optimized. Moreover, by comparing the improvement predicted

by the approximation model to the improvement realized for the true system being optimized, we obtain

useful information on how well the model is predicting the behavior of the system. This information can be

used to suggest when a model of greater or lesser fidelity may be more suitable as well as when more or less

optimization might be done on the model before the next comparison.

In this paper we consider only the case of unconstrained minimization. We do this, in part, for simplicity

in presenting the trust region approach. A discussion of trust region approaches to constrained optimization,

particularly the convergence theory for constrained algorithms, would require the introduction of technical

machinery that would obscure the points we wish to make. Moreover, many nonlinear programming algo-

rithms for constrained optimization--penalty methods, classical and modified barrier methods, augmented

Lagrangian methods--actually proceed by solving a sequence of unconstrained optimization problems, to

which the current discussion applies. The case of constrained optimization we will treat in detail elsewhere.

Let x ---- (xl, ... , x n) denote the design variables, and suppose that one has a model of high physical

fidelity but high computational cost, as well as an approximate model of lower physical fidelity but lower

computational cost. Let the associated performance measures (merit/cost/objective functions) be f(x) and

a(x) and their sensitivities (with respect to the design variables) be Vf(x) and Va(x):

x --* [High-fidelity ("true") model] -*/(x), V/(x)

x Approximate model a(x), W(x).

Fig.1 describes a conceptual scheme for using approximation models in the context of optimization. One

occasionally uses information from the high-fidelity model to check designs generated using a model of lower

fidelity but of lower computational cost. One then takes a number of optimization iterations using this

simpler, cheaper approximation model. At the end of this optimization phase, one has recourse to the high-

fidelity model to recalibrate the lower-fidelity model and then continues optimization using the simplified
model.

In order to make such a scheme robust--that is, to be assured that we are converging to a design that is

likely to yield at least a local optimum for the original, high-fidelity problem--we must address the following

questions.

* What does one do when the design derived from optimization using the approximation model a fails

to produce improvement in the true objective f?

• More generally, how can one use information about the predictive value of a (or lack thereof) to

regulate the amount of optimization done using a before recourse to the high-fidelity model?
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FIG. 1, Conceptual optimization algorithm using approximation models.

In addition, for reasons of efficiency, one also seeks guidance in regards to the following:

• When might it be appropriate to either change or refine the model to improve the progress of

the optimization? When can the quality (and, presumably, cost) of the approximation model be

reduced?

The trust region mechanism gives a systematic response to both poor and incorrect prediction on the part

of the approximation model while not being so conservative as to retard progress when the approximation

model does a good job of predicting improvement in the high-fidelity model. Furthermore, the trust region

mechanism gives us a measure of how well the model is predicting improvement in the system and thus

suggests criteria for changing or updating the model based on this measure of the predictive abilities of the

model.

The approach we present is a confluence of a theoretically and practically attractive nonlinear program-

ming methodology with a widely used engineering practice. The exclusive focus in nonlinear optimization

has been on the use of local models, almost always quadratic, with various approximations to first- and

second-order sensitivities. Our contribution here is the observation that the trust region framework fits nat-

urally with the idea of using non-quadratic approximations found in engineering optimization. We require

the approximations only to satisfy a few mild conditions, discussed in §3. Mathematically, the trust region

framework for managing approximations is a straightforward extension of the classical trust region theory.

In §2 we present the relevant features of classical trust region algorithms. In §3 we apply the classical trust

region approach to manage the use of the more general approximations available in engineering applications.

In §4 we discuss how the convergence theory for classical trust region algorithms remains valid for the new

approach using general approximation models. In §5 we discuss how the information used in the course of

the the classical trust region approach might be used to decide when it might be appropriate to either change

or refine the model to improve the progress of the optimization. Examples of approximations that can be

used in the trust region framework we present are discussed in the Appendix.

2. The classical trust region approach in optimization. One of the goals of modern nonlinear

programming algorithms is robust global behavior. By robust global behavior we mean the mathematical

assurance that the iterates produced by an optimization algorithm, started at an arbitrary initial iterate, will

converge to a stationary point or local optimizer for the problem. This robustness is achieved by globalization

strategies such as trust regions, line searches, and continuation methods.

The classical trust region idea is to regulate the length of the steps taken in an iterative optimization

process based on how well the current quadratic Taylor series model of f is found to predict improvement



in f. This leads to an adaptive method for adjusting the size of the steps taken based on how well the local

quadratic models are predicting decrease in f.

At iteration k, one begins by building a quadratic model qk of the objective function:

qk(xk + s) = f(Xk) + gT s + _sTBks.(1) f(xk + 8)

We use here the notation s to denote the prospective step Ax in the design variables, gk to denote an

approximation of the gradient gradf(xk), and the term Bk to denote a model of the second derivatives

(curvature) of f at xk. The convergence analysis of trust region methods in the unconstrained case places very

mild requirements on the information used to construct the approximation (1). The gradient approximation

g can be of limited accuracy [5], while the Bk need only remain uniformly bounded in norm. Typically Bk

is the Hessian of f, calculated analytically or via finite-differences, or a quasi-Newton Hessian built up using

a secant update such as BFGS or DFP [8].

The trust region algorithm proceeds by building and minimizing quadratic models of the form (1).

However, in general such a quadratic model is known to be a good approximation only in a neighborhood

of xk. Consequently, we restrict the step we take to a region in which we trust the quadratic model to

approximate f well, whence the name "trust region." This is done by adding a constraint on the length of

the step allowed, resulting in the trust region subproblem:

minimize qk(Xk + s)

(2) subject to I[ s [[ < (fk.

Note that the the direction of the step may vary with Jk. In practice, one need not solve the problem (2)

exactly for the step sk; there is a relaxed condition on how much decrease sk must produce in the quadratic

model qk in order to insure robust behavior [26, 17]. We discuss this criterion, the Fraction of Cauchy

Decrease condition, in §4.

Although in this algorithm we use an _2 trust region, that is, the bound on the step is expressed using

the Euclidean norm, this assumes an even scaling of all the components of x. In practice, the variables are

scaled to improve performance; this leads to a trust region of the form [I As H -< _ik, where A is a symmetric

positive definite matrix. Other choices of norm are possible to define the trust region as well. For instance,

one can use the g_ norm, which is more appropriate when solving problems with bounds on the design

variables [11].

One then decides whether to accept the prospective step s:

XkW8 iff(xk÷8) < f(Xk)(3) Xk+l = xk otherwise.

The trust radius _k is similar in purpose to a move limit [30]. However, the two are distinguished by the

way in which they are updated. Move limits are set and updated in a manner based on the intuition of the

user. From the point of view of mathematical analysis this is ad hoc. While the use of move limits in this

way can be successhtl, to the authors' knowledge no proof of convergence for optimization algorithms that

use move limits exists. On the other hand, in trust region algorithms, the "move limit"--the trust radius--is

expanded and contracted in a systematic way for which one can prove global and local convergence results.

In particular, after each optimization iteration, the trust radius is updated in an adaptive way based on

the predictive quality of the quadratic model used to generate steps, according to the following principles:

1. If the model did a very good job of predicting the actual improvement of f or if there was even more

improvement than predicted in f, then increase _k and allow a longer step at the next optimization



iterationk + 1, since the model has proven its utility in finding improvement in f over the current

trust region.

2. However, if the model did a bad job of predicting the improvement in f, either because f actu-

ally increased with the step s, or because f did decrease but not nearly as much as predicted by

the quadratic model, decrease the size of the trust region used in the next optimization iteration.

Calculus assures us that the quadratic model is good if wc remain sufficiently close to xk.

3. Finally, if the model did an acceptable but not especially noteworthy job of predicting the improve-

ment in f, leave the size of the trust region alone.

Numerically, one chooses positive constants rl < r2 < 1 and cl < 1, c2 > 1 that regulate the expansion and

contraction of the trust region. One compares the actual and predicted decrease,

and updates the trust radius as follows:

5k+1 = /(4)
(

r
f(Xk) -- f(xk + S)

I( k) - q (xk +

c, llsll ifr<rl

min{c2Hbk II,A*} ifr>r2

II s II otherwise,

where A* is an upper bound on the trust radius. Typical values for ?'1 and r2 are rl ---- 0.10 and r2 = 0.75

[8].

Note that we do not reduce the trust region if the quadratic model under-predicts improvement in f. In

the context of optimization, we focus on predicting descent, as opposed to the more general question of the

overall quality of the approximation. The latter issue is important, however, in constrained problems if one

wishes to insure feasibility of the iterates produced by an optimization algorithm.

The classical trust region algorithm is summarized in Figure 2. We have omitted stopping criteria; for

a discussion of stopping criteria for trust region methods, see [8, 12].

Choose x0 E/T_ n and 50 > 0.

For k = 0, 1,... until convergence do {

Find an approximate solution sk to the subproblem:

minimize qk (xk + s)

subject to Ilsll_bk.

Compare the actual and predicted decrease:
f(xk) -- f(xk + Sk)

r_

f(Xk) -- qk(xk + Sk)"
Update xk according to (3) and 5k according to (4).

FIc. 2. The classical trust region algorithm for unconstrained minimization.

3. A trust region approach with generalized approximation models. In the engineering opti-

mization literature, the quadratic model (1) based on the Taylor series for f is sometimes called a formal

approximation. Alternative models used in engineering practice can produce approximations that are better

than the quadratic model over a larger neighborhood. These approximations are usually based on some

knowledge of the problem and thus are specific to the application whereas quadratic models are always



locallyapplicable.Manysuchproblem-specificapproximationscanbe foundin thestructuraloptimiza-
tion literature;wediscusssomeexamplesthat satisfytheconditionsof thetrustregionframeworkin the
Appendix.

Weplacethefollowingtworequirementsontheapproximationmodelusedateachoptimizationiteration:

(5)

(6) grad ak (xk) = grad f (Xk).

If the model ak and its first derivatives at Xk agree with those of the actual objective f, we call the approx-

imation a first-order model. If, in addition,

(7) grad 2 ak(xk) = grad 2 f(xk),

we call the approximation a second-order model, though these are not the primary focus of this paper since

it is typically not the case that second-order derivatives of f are available.

In the case of unconstrained minimization we actually can weaken the condition (6) and develop an

approach based on inexact gradients along the lines of [5], but for simplicity we will not pursue that approach

here. One can also develop an approach using zero-order models that satisfy only the condition (5) [7].

The conditions (5)-(6) are not especially restrictive if exact or approximate sensitivity information for

f is available. In the Appendix we discuss examples of approximations that satisfy (5)-(6) by construction.

The conditions (5) and (6) guarantee that sufficiently close to Xk, the approximation ak is a good model

of f. It is then clear how the trust region approach provides a mechanism to regulate the use of a in an

optimization iteration: if the approximation model a is not a good predictor of the improvement of f for a

long step, we decrease (f and fall back on a region in which a is an increasingly good model of f. On the

other hand, if a is doing a good job of approximating the behavior of f, then we do not decrease the length

of the steps we take, and thereby avoid unnecessarily restricting the progress of the optimization.

The trust region algorithm for unconstrained minimization using general first-order approximation mod-

els is then given in Figure 3, again, omitting the stopping criteria. In §4 we explain precisely what we mean

Choose x0 E/R n, A0 > 0.

For k = 0, 1,... until convergence do {

Choose ak that satisfies ak (Xk) = f(Xk) and grad ak (Xk) = grad f (Xk).

Find an approximate solution Sk (for example, as in Figure 4)

to the subproblem:

minimize ak(Xk -k- 8)

subject to Ilsll--<Ak.

Compare the actual and predicted decrease in f:
f(xk) -- f(Xk + 8k)

r-_-
f(Xk) -- ak(Xk -_- 8k)"

Update xk according to (3) and A k according to (4).

Fro. 3. A trust region algorithm using general approximation models.

by finding an approximate solution sk to the subproblem.

Note that the approximation need not be fixed across all iterations; it can vary with the iteration, so

we denote the approximation by ak rather than a. One can change the approximation model if necessary



to reflectthecurrentregionof thedesignspace(for thecaseof quadraticmodels,see[4]).Fhrthermore,

though only a single level of approximation is described in Figure 3, nothing precludes additional levels

of approximation in solving the subproblem. The framework we propose can accommodate many levels of

approximation which vary in fidelity but also, presumably, in computational cost.

4. Robustness and convergence theory. Obviously, the practical performance of any algorithm

along the lines of Figure 1 depends on the quality of the approximation models and their ability to predict

the behavior of f. However, we can make some general mathematical statements about the analytical

robustness of the trust region framework for using approximation models in optimization.

In the conceptual algorithm given in Figure 1, if an optimization iterate is unsuccessful, the user would

respond by improving the fidelity of the model and/or "doing less optimization". The trust region approach

focuses on the latter option, which is accomplished by reducing the trust radius. This incidentally has the

effect of "improving the model" insofar as attention is restricted to smaller regions in which the approximation

is increasingly better. This strategy enables us to establish the robust behavior of the approach under the

reasonably mild matching conditions (5) and (6), as we now discuss.

The algorithm in Figure 3 is the classical trust region procedure for unconstrained minimization with

the distinction that the trust region subproblem

minimize ak(xk + s)

(8) subject to [[ s [[ _< Ak

involves a general first-order approximation model ak instead of the conventional quadratic model qk given

by (1).

The trust region algorithm for general approximation models in Figure 3 requires only that this subprol>

lem be solved approximately. Here "approximately" means that the solution of each iteration, sk, can be

obtained in any manner suitable to the application, as long as it satisfies a condition, known as the Fraction

of Cauchy Decrease (FCD) condition, concerning the change in the the model ak from the point xk to the

point xk + sk. Let g(x) = grad f(x). We state the FCD condition in the following form: there exist 13 > 0

and C > 0, independent of k, for which the step Sk satisfies

(9) f(Xk)--ak(xk +Sk)> _ IIg(Xk)Ilmin (hk, IIg(xk)Jl)-- C "

Roughly speaking, (9) says that we require the approximation to predict some fraction of the improvement

in f that is predicted by the minimum of the linear model of f restricted to the trust region.

Moreover, a consequence of (9) is that we need not strictly enforce the trust region constraint. The

length of the step Sk is acceptable if [[ s [[ < aAk for a > 1 independent of k. See [17] for a more general

discussion of the FCD condition.

The FCD condition (9) is very mild and, typically, trust region algorithms automatically satisfy this

condition by design. In Figure 4 we give an algorithm for solving the subproblem (8) that satisfies the FCD

condition. This algorithm for solving the subproblem is itself based on the classical trust region approach

using a local quadratic approximation.

The algorithm in Figure 4 for computing the step sk is a sequence of classical trust region iterations

applied to the approximation model ak as the unconstrained objective. Algorithms for the exact and ap-



GivenXk E/Rn,, Ak > 0, T E (0, 1), and a _ 1, set Y0 = xk, 60 = _'Ak, v0 = 0.

For j = 0, 1,..., while [[ s [[ < aAk and at least until vj _ 0 do {

Construct a quadratic model qj(yj + p) = ak(yj) + gradak(yj)Tp-k 1 T_p Bjp,

where Bj approximates the second order information for ak at yj.

Find an approximate solution pj to

minimize qj (yj + p)

subject to I[P H -< (fj

IIyj + p II< z_
that satisfies FCD for ak from yj.

Compare the actual and predicted decrease in ak:
ak(Yj) -- ak(yj +pc)

r__

a_(y_) - q_(yj+ pj) "
Update yj according to (10) and 5j according to (4).

Set vj+l = vj -t- (Yj+I - Yj).

FIc. 4. A trust region algorithm .for computing sk approximately.

proximate solution of the subproblem

minimize q_ (y_ + p)

subject to tl P It --<(it

tly_+ p II-<Ak

are discussed in [16].

We use a slightly more stringent rule for updating yj than we used for updating Xk in (3). We choose

# > 0, independent of k,j, and update as follows:

ifyj=xk, thenyj+l= I yj+pj ifr>#

(10) yj otherwise.

If yj _ xk, then Yj+I = YJ + pj if r > 0
yj otherwise.

This rule, a slight modification of one frequently encountered in both the theoretical analysis and practical

implementation of trust region methods, insures that the solution of the subproblem (8) satisfies the FCD

condition for f at Xk: we do not accept a step from Xk until r > # > 0 (we axe guaranteed that eventually we

will find such a step since, if we do not, we reduce the trust region, and ultimately a successful step will be

found). Let PN be that first acceptable step. Since the step generated by the classical trust region algorithm

applied to ak satisfies the FCD condition for ak at Xk, and r > it, we have

ak(xk) -- ak(xk + PN) >_ It (ak(Xk) -- qN(Xk + PN))

_> tt_ ll gradak(xk) llmin (_N, H gradak(Xk)c II) ,

which, in light of (5) and (6), yields

$(xk) - ak(xk +PN)> _,_'IIgrady(xk)II rain(,_.,v,IIgrady(xk)II)-- C



If we place the additional requirement that the Hessians graJ ak (X'-[-8) of the approximations ak are bounded

for all s such that II s II _ Ak uniformly in k, then we can be assured that there exists 7 independent of k

for which tin > "yAk, so we arrive at an FCD condition for ak as an approximation of f at xk:

f(xk) -- ak (Xk + pN) > "Y#_ II grad f (xk) IImin (Ak, II grad f (xk) II)-- C '

Since any steps after step N only produce further decrease in ak, the step generated by the algorithm in

Figure 4 produces a fraction of Cauchy decrease for ak as an approximation of f at xk.

Because the convergence analysis of our algorithm is virtually identical to the analysis of classical trust

region methods, we give only an outline here. Powell's global convergence theorem [21] is a powerful result

that provides simple conditions for analyzing all trust region algorithms. The theorem states that if f

is bounded below, uniformly continuously differentiable, and the Hessian approximations Bk in (1) are

uniformly bounded, then the sequence of iterates generated by a classical trust-region algorithm whose steps

satisfy a FCD condition satisfies

liminf II grad f(xk) ]1 = O.
k--_oc

If one uses a step acceptance criterion of the form (10) instead of (3) in the classical algorithm, one has

lim II grady(xk) II= 0.

Since the algorithm that we propose to find steps sk satisfies a FCD condition for thc models ak (Figure 4),

similar results hold for our algorithm under the hypothesis that the Hessians grad 2 ak(x + s) are bounded

uniformly in k for all s such that Iis II ---Ak.

With second-order models one can devise algorithms with convergence propcrties like those found in

[25, 26]. These classes of algorithms insure convergence to points at which the Hessian of f is positive

semi-definite, the second-order necessary condition for minimality, and convergence to a local minimizer if

f is locally convex around such a point.

Unlike the trust region approach, the line-search strategy [8, 13] does not generalize in a straightforward

way to non-quadratic approximation models. If the current iterate is point A, and a line-search method

applied to the approximation ak visits first the point B and then C, we know that the direction from A to

B is a descent direction for f, and that the direction from B to C is a descent direction for ak, but there is

no guarantee that the direction from A to C is a descent direction for f. Thus any backtracking mechanism

associated with a fine-search method will not necessarily produce improvement as one takes shorter steps

if the search direction is decided by minimizing an approximation model, since there is no guarantee that

such a search direction points in a direction of descent in a neighborhood of xk. One would need to store

the intermediate iterates in the approximation of ak and perform a search along the piecewise linear path

defined by those points.

5. l_lationship to model management. The principles that underlie the update of the trust radius

in the classical trust region method were presented in §2. We now observe that these principles may suggest

ideas for deciding when a model of greater or lesser fidelity may be more suitable. These observations are

based on the fact that in the classical trust region approach, the approximation model was always quadratic,

and the only way of "improving" the model was to reduce the trust radius, thereby restricting attention to

a region where the quadratic model is a better approximation. In the ease of general approximation models,

however, we may have the option of changing the nature of the model, in addition to changing the trust

radius.



Recallthat in theclassicaltrust region algorithm given in Figure 2, if the model did a very good job of

predicting improvement in f, then the update rule for Sk increases Sk, thus allowing longer steps at the next

optimization iteration k + 1, since the model has proven itself to be good over the current trust region. In

the case of general approximation models, we also have the option of changing the nature of the model. If

the model is doing an exceptionally good job of producing improvement in the system, then we may be able

to use a different model, perhaps one with less physical accuracy but lower computational cost.

In the classical algorithm, if the model did a bad job of predicting improvement in f, either because

f actually increased with the step s or because f did decrease but not nearly as much as predicted by the

quadratic model, we decrease the size of the trust region used in the next optimization iteration, since this

is our only mechanism for "improving" the quadratic model, and we know that this model is good if we

remain sufficiently close to xk. In the setting of general approximation models, the need to reduce the trust

region also indicates that progress may be more successful with a different choice of models--again, a model

management decision.

Finally, in the classical algorithm we leave the size of the trust region alone if the model did an acceptable

but not especially noteworthy job of predicting the improvement in f. For general approximation models,

this suggests that the model remain the same since its predictive abilities have just proven to be sufficient

and there is no strong reason to believe that a less faithful model will be sufficient for the purposes of the

optimization.

6. Conclusion. We have presented a trust region approach to the use of approximation models in opti-

mization with provable robustness properties in terms of its convergence to stationary points for the original

problem. Moreover the trust region idea of monitoring the improvement predicted by the approximation

model to the improvement realized for the true system being optimized may prove useful in suggesting when

a model of greater or lesser accuracy may be more suitable. The practical significance of the latter point

will be the subject of future investigation.
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Appendix: Examples of first-order approximation models. In this section we briefly review

some examples of approximation models that satisfy the first-order requirements (5) and (6).

Algebraic approximation models. Early work in the development of approximation concepts for

structural optimization [22] concentrated on using linear approximations so that mathematical programming

techniques such as sequential linear programming (SLP) could be employed. Linear approximations are one

instance of the more general form

(11) ak(x) = f(xk) + Zgi(Xk)(X i -- Xik)¢i(x i, Xik),

i=1

where x = (xl, .-- ,x n) and gi = Ox,f. Any approximation of the form (11) necessarily satisfies ak(xk) =

f(xk). We also see that

O ,ak(z) = x'

so gradak(x_) = gradf(Xk) if and only if ¢i(x_, x_) = 1.

The choice ¢_(x_,x_) = 1 yields the first-order Taylor series approximation, the simplest form of (11).

An alternative approximation seen in structural optimization comes from introducing reciprocal variables

10



into the formulation of the problem. This transformation is based on the observation that a significant class

of constraints in structural engineering can be transformed from nonlinear to linear equations by using the

reciprocals of the sizing type design variables (at the expense of introducing nonlinearity into the objective

function). This leads to the reciprocal approximation,

n Xi

(12) ak(x) = f(xk) + Egi(xk)(x i --Xi_k)--_,k
i=1

where _.,_,.tx'_, x_kJ_= x_k/ xi"

Early computational results employing these two approximations [28] suggested that the use of such

linearizations, in particular, a first-order Taylor series approximation, could be computationally effective

(and here it is noted that there is also a significant computational savings to be enjoyed), but that such

approximations were not always accurate. It was also observed that a significant problem with the use of

reciprocal variables is that the approximation becomes unbounded if any one of the variables approaches

zero.

Subsequent work along these lines was aimed at greater accuracy and numerical stability in the approx-

imation model without requiring the costly calculation of higher-order derivatives. Examples of such work

include the modified reciprocal approximation [14],

n

- z' ) + c(13) ak(x) = f(xk) + k
i=1

with _ 1¢_ (x, Xk) ---- (x_k+c')/(x _+c i) (where the values of the c"s are typically small compared to representative

values of the corresponding x i's), and the conservative approximation [27],

n

(14) ak(x) = f(xk) + Egi(xk)(X _ - xik)_',_"(x',x_),"
i=1

where

l

i i 1 ifz_gi(xk) > 0

¢_(X'Xk)= x_/z _ otherwise.

The conservative approximation has the attractive feature of leading to a convex programming problem

and thus is amenable to solution by nonlinear programming techniques that take advantage of the dual

problem. This observation has led to the development of a range of convex approximation strategies (in

particular, [23, 3, 10]; see [2] for further references).

A slightly different line of inquiry noted that the reciprocal and conservative approximations destroy the

linearity of the problem and thus the possibility of using SLP. However, the posynomial approximation [9],

with

• i

,
i=l

c_i_ 1

ean be treated using geometric programming techniques. This approach is studied in [15, 19, 20, 29]. This

approach is noteworthy in that it has an attendant convergence analysis; [1, 18] show that under appropriate

11



conditions,geometricprogrammingtechniques,whenappliedto aposynomialapproximationof the original

problem, converge to a stationary point of the original problem.

Finally, we briefly mention second-order approximation models of the form

n

(15) ak(x) = f(xk) + E gi(xk)(x _ _ xk)¢,(x,, , xk)i
i=1

+ Y_h,;(_/(_'-_)(_J -_/_,_(_, '_,_,_), '
i=1 j=l

where _ i¢,(Xk, xk) = 1 and ¢O(x_, x_, x_k, _) = 1. The reciprocal quadratic approximation is an instance of

this type of model:

n Xi

ak(x) =/(x_) + )--_g,(_k)(x' -xk)7_ k
i=1

n n

i=1 j=l

X i

¢,(_,,_1) _ _ ¢,j(x',_i z_,4) - _i 4- _ , _.

The fLcorrelation approach. The/_-correlation method to approximate modeling presented in [6]

is a generic approach to correcting a lower-fidelity model rio, say, one of lower physical fidelity, by scaling.

Unlike the models of the preceding section, this approach is not based on any specific mathematical form of

the response f.

One defines the scale factor t3 to be

Given the current design Xk, one builds a first-order model ]_k of B about Xk:

_c(x) = _(x_) + grad_(xk)T(x -- xk).

The local model of f_ is then used to scale the lower-fidelity model in order to derive a better approximation

of f:

f(x) =/_(x)a(x) _ _k(x)flo(X).

It is straightforward to verify that the approximation

ak(z) = _k(_)flo(_)

satisfies (5) and (6).

The B-correlation method can be extended to produce second-order approximation models by using a

second-order model of f_,

1
_k (x) =/3(x1¢) + grad _(xk)T (X -- X k) -Jr- _ (X -- X k)T grad 2_(Xk) (x -- Xk),

and the approximation ak (x) = _k (x)flo (x).

12
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